
ACADEMIC YEAR 2017-2018 Hall Ticket No:

II B.Tech I SEM (R16) I Mid Examinations Subject: Python Programming

Branch: CSE Time: 9:15 AM To 10.45 AM

Max. Marks : 30M Date:16-08-2017

Don’t Write Anything on question paper

SRI VASAVI
INSTITUTE OF ENGINEERING & TECHNOLOGY

NANDAMURU. PEDANA. - 521 369.

Answer All Questions. All Questions carry equal marks.

 3 X 10 = 30 Marks

1) a) Describe the Features of Python. 4 M

b) Write a program to read and print values of variables of int,

float, string and complex data types. 2 M

c) What are the rules for identifiers in Python? 2 M

d) What is Indentation? Explain importance of indentation in

python. 2 M

2) a) Explain range() Function with example. 3 M

b) Write a Program to find the cube root of a given number. For

example if the input is 8 output should be displayed 2. 3 M

c) Write a Program to illustrate the continue, break and pass

statements. 4 M

3) a) What is Dictionary? What are the properties of dictionary

keys. Explain fromkeys(), has_key(), get() methods of dictionary

with an example. 6 M

 b) Write a Python Program for

i) Create and Assign Lists ii) Access Values in Lists

iii) Update Lists iv) Remove List Elements

and Lists 4 M

Name of the Course: Python Programming Academic Year: 2017 – 18
Name of the Faculty: Mr. P.V.L. Narasimha Rao Year & Semester: II Year I Sem
Course Code: C214 Section: CSE

Python Programming Mid – I Scheme of Valuation

1. A) Describe the features of python. - 4 Marks

Python's features include −
 Easy-to-learn − Python has few keywords, simple structure, and a clearly defined syntax. This

allows the student to pick up the language quickly.
 Easy-to-read − Python code is more clearly defined and visible to the eyes.
 Easy-to-maintain − Python's source code is fairly easy-to-maintain.
 A broad standard library − Python's bulk of the library is very portable and cross-platform

compatible on UNIX, Windows, and Macintosh.
 Interactive Mode − Python has support for an interactive mode which allows interactive

testing and debugging of snippets of code.
 Portable − Python can run on a wide variety of hardware platforms and has the same interface

on all platforms.
 Extendable − You can add low-level modules to the Python interpreter. These modules enable

programmers to add to or customize their tools to be more efficient.
 Databases − Python provides interfaces to all major commercial databases.
 GUI Programming − Python supports GUI applications that can be created and ported to

many system calls, libraries and windows systems, such as Windows MFC, Macintosh, and the
X Window system of Unix.

 Scalable − Python provides a better structure and support for large programs than shell
scripting.

Apart from the above-mentioned features, Python has a big list of good features, few are listed below
−

 It supports functional and structured programming methods as well as OOP.
 It can be used as a scripting language or can be compiled to byte-code for building large

applications.
 It provides very high-level dynamic data types and supports dynamic type checking.
 It supports automatic garbage collection.
 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

1. B) Write a Program to read and print values of variables of int, float, string, and complex

data types. - 2Marks

n1=int(input("Enter a integer value:"))
n2=float(input("Enter a Floating Point Value:"))
str=input("Enter a String:")
n3=complex(input("Enter a Complex Number:"))
print(n1)
print(n2)
print(str)
print(n3)

1. c) What are the rules for identifers in Python? - 2 Marks

A Python identifier is a name used to identify a variable, function, class, module or other object. An
identifier starts with a letter A to Z or a to z or an underscore (_) followed by zero or more letters,
underscores and digits (0 to 9).
Python does not allow punctuation characters such as @, $, and % within identifiers. Python is a case
sensitive programming language. Thus, Manpower and manpower are two different identifiers in
Python.
Here are naming conventions for Python identifiers −

 Class names start with an uppercase letter. All other identifiers start with a lowercase letter.
 Starting an identifier with a single leading underscore indicates that the identifier is private.
 Starting an identifier with two leading underscores indicates a strongly private identifier.
 If the identifier also ends with two trailing underscores, the identifier is a language-defined

special name.

1. d) What is Indentation? What is the use of Indentation? Explain with example. – 2 Marks

Whitespace at the beginning of the line is called indentation. These whitespaces or the
indentation are very important in python. In a python program, the leading whitespace including
spaces and tabs at the beginning of the logical line determines the indentation level of that logical
line. In python, indentation is used to associate the group statements.

Program to exhibit indentation error

[root@localhost ~]# vi try.py
Age=21
 Print(“You can vote”)

[root@localhost ~]# python3 try.py
 File "try.py", line 2
 print("You can vote")
 ^
IndentationError: unexpected indent

 The level of indentation groups statements to form a block of statements. This means
that statements in a block must have the same indentation level. Python very strictly checks the
indentation level and gives an error if indentation is not correct.
 Like other programming languages python does not use curly braces to indicate blocks of
code for class, function definitions or flow of control statements. It uses only indentation to form
a block. All statements inside a block should be at the same indentation level.
 The above example is corrected as below to get output

[root@localhost ~]# vi try.py
Age=21
Print(“You can vote”)

[root@localhost ~]# python3 try.py
You can vote

2. a) Explain range() function with example - 3 Marks

The range() type returns an immutable sequence of numbers between the given start integer to the stop
integer.
range() constructor has two forms of definition:

range(stop)

range(start, stop[, step])

range() Parameters

range() takes mainly three arguments having the same use in both definitions:
 start - integer starting from which the sequence of integers is to be returned
 stop - integer before which the sequence of integers is to be returned.

The range of integers end at stop - 1.
 step (Optional) - integer value which determines the increment between each integer in the

sequence

Return value from range()

range() returns an immutable sequence object of numbers depending upon the definitions used:
range(stop)

 Returns a sequence of numbers starting from 0 to stop - 1
 Returns an empty sequence if stop is negative or 0.

range(start, stop[, step])
The return value is calculated by the following formula with the given constraints:
r[n] = start + step*n (for both positive and negative step)
where, n >=0 and r[n] < stop (for positive step)
where, n >= 0 and r[n] > stop (for negative step)

 (If no step) Step defaults to 1. Returns a sequence of numbers starting from start and ending
at stop - 1.

 (if step is zero) Raises a ValueError exception

 (if step is non-zero) Checks if the value constraint is met and returns a sequence according to
the formula
If it doesn't meet the value constraint, Empty sequence is returned.

Example

empty range
print(list(range(0)))

using range(stop)
print(list(range(10)))

using range(start, stop)
print(list(range(1, 10)))

Output:

[]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

2. b) Write a program to find the cube root of a given number. For example if the input is 8

output should be displayed 2. - 3 Marks

num=int(input("Enter a number:"))
cube=num**(1/3)
print("Cube of a given number=",cube)

2. c) Write a program to illustrate continue, break, and pass statements. – 4 Marks

for number in range(10):
 if number == 6:
 continue
 if number==9:
 break
 if number==3:
 pass
 print(number)

Output:

0
1
2
3
4
5
7
8

3. a) What is Dictionary? What are the properties of dictionary keys. Explain fromkeys(),

has_key(), get() methods of dictionary with an example. - 5 Marks

 Each key is separated from its value by a colon (:), the items are separated by commas, and the
whole thing is enclosed in curly braces. An empty dictionary without any items is written with just two
curly braces, like this: {}.

Keys are unique within a dictionary while values may not be. The values of a dictionary can be
of any type, but the keys must be of an immutable data type such as strings, numbers, or tuples.

Properties of Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, either standard
objects or user-defined objects. However, same is not true for the keys.

There are two important points to remember about dictionary keys −
(a) More than one entry per key not allowed. Which means no duplicate key is allowed. When
duplicate keys encountered during assignment, the last assignment wins. For example −

#!/usr/bin/python
dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'}
print "dict['Name']: ", dict['Name']
When the above code is executed, it produces the following result −
dict['Name']: Manni

(b) Keys must be immutable. Which means you can use strings, numbers or tuples as dictionary keys
but something like ['key'] is not allowed. Following is a simple example −

#!/usr/bin/python
dict = {['Name']: 'Zara', 'Age': 7}
print "dict['Name']: ", dict['Name']
When the above code is executed, it produces the following result −
Traceback (most recent call last):
 File "test.py", line 3, in <module>
 dict = {['Name']: 'Zara', 'Age': 7};
TypeError: unhashable type: 'list'

fromkeys()

The method fromkeys() creates a new dictionary with keys from seq and values set to value.

Following is the syntax for fromkeys() method −

dict.fromkeys(seq[, value])

Parameters

 seq − This is the list of values which would be used for dictionary keys preparation.
 value − This is optional, if provided then value would be set to this value

Return Value
This method returns the list.

get()

The method get() returns a value for the given key. If key is not available then returns default value
None.
Following is the syntax for get() method −

dict.get(key, default = None)
Parameters

 key − This is the Key to be searched in the dictionary.
 default − This is the Value to be returned in case key does not exist.

Return Value
This method return a value for the given key. If key is not available, then returns default value

None.

has_key()

The method has_key() returns true if a given key is available in the dictionary, otherwise it returns a
false.
Following is the syntax for has_key() method −

dict.has_key(key)
Parameters

 key − This is the Key to be searched in the dictionary.
Return Value

This method return true if a given key is available in the dictionary, otherwise it returns a false.

3. b) Write a Python program for i) Create and Assign Lists ii) Access Values in Lists iii) Update

Lists iv) Remove List Elements and Lists. - 5 Marks

#creating Lists
list1 = ['physics', 'chemistry', 1997, 2000]
list2 = [1, 2, 3, 4, 5]
print(list1)
print(list2)
#Accessing Values in List
print("list1[0]: ", list1[0])
print("list2[1:5]: ", list2[1:5])
#Updating Lists
print("Value available at index 2 in list1 : ")
print(list1[2])
list1[2] = 2001;
print("New value available at index 2 list1 : ")
print(list1[2])
#Removing List Elements
print("Before deleting value at index 2 : ")
print(list1)
del list1[2];
print("After deleting value at index 2 : ")
print(list1)

ACADEMIC YEAR 2017-2018 Hall Ticket No:

II B.Tech I SEM II Mid Examinations Subject: Python Programming

Branch: CSE Time: 9:15 AM To 10.45 AM

Max. Marks : 30M Date: 14-10-2017

Don’t Write Anything on question paper

SRI VASAVI
INSTITUTE OF ENGINEERING & TECHNOLOGY

NANDAMURU. PEDANA. - 521 369.

Answer All Questions. All Questions carry equal marks.

 3 X 10 = 30 Marks

1. A. Explain keyword arguments, variable length

arguments with examples. 5 M

B. Write a function is_leap_year which takes the year

as its argument and checks whether the year is leap

year or not and then displays an appropriate message

on the screen. 5 M

2. A. How do you implement inheritance in Python?

Describe in detail about multiple inheritance in Python.

5 M

B. Explain in detail about handling exceptions and

raising exceptions. 5 M

3. A. What is unit testing? Write a test case to check the

function factorial which returns the factorial of a given

number 5 M

B. Program to illustrate multithreading in python.

5 M

Name of the Course: Python Programming Academic Year: 2017 – 18
Name of the Faculty: Mr. P.V.L. Narasimha Rao Year & Semester: II Year I Sem
Course Code: C214 Section: CSE

Python Programming Mid – II Scheme of Valuation

1. A) Explain keyword and variable-length arguments. 5 Marks

Keyword arguments:

We call a function with some values; these values get assigned to the arguments according to
their position.

For example, in the above function greet(), when we called it as greet("Bruce","How do you
do?"), the value "Bruce" gets assigned to the argument name and similarly "How do you do?" to msg.
Python allows functions to be called using keyword arguments. When we call functions in this way,
the order (position) of the arguments can be changed. Following calls to the above function are all
valid and produce the same result.
>>> # 2 keyword arguments
>>> greet(name = "Bruce",msg = "How do you do?")

>>> # 2 keyword arguments (out of order)
>>> greet(msg = "How do you do?",name = "Bruce")

>>> # 1 positional, 1 keyword argument
>>> greet("Bruce",msg = "How do you do?")

As we can see, we can mix positional arguments with keyword arguments during a function
call. But we must keep in mind that keyword arguments must follow positional arguments.
Having a positional argument after keyword arguments will result into errors. For example the
function call as follows:
greet(name="Bruce","How do you do?")
Will result into error as:
SyntaxError: non-keyword arg after keyword arg

Variable-length arguments

You may need to process a function for more arguments than you specified while defining the
function. These arguments are called variable-lengtharguments and are not named in the function
definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this −
def functionname([formal_args,] *var_args_tuple):
 "function_docstring"

 function_suite
 return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword
variable arguments. This tuple remains empty if no additional arguments are specified during the
function call. Following is a simple example

Function definition is here
def printinfo(arg1, *vartuple):
 "This prints a variable passed arguments"
 print "Output is: "
 print arg1
 for var in vartuple:
 print var
 return;

Now you can call printinfo function
printinfo(10)
printinfo(70, 60, 50)

When the above code is executed, it produces the following result −

Output is:
10
Output is:
70
60
50

1. B) Write a function is_leap_year which takes the year as its argument and checks whether the

year is leap year or not and then displays an appropriate message on the screen - 5Marks

def leapyear(year):
 if (year % 4) == 0:
 if (year % 100) == 0:
 if (year % 400) == 0:
 print("{0} is a leap year".format(year))
 else:
 print("{0} is not a leap year".format(year))
 else:
 print("{0} is a leap year".format(year))
 else:
 print("{0} is not a leap year".format(year))
year = int(input("Enter a year: "))
leapyear(year)

2. A) How do you implement inheritance in Python? Describe in detail about multiple

inheritance in Python.. – 5 Marks

Inheritance is a powerful feature in object oriented programming.
It refers to defining a new class with little or no modification to an existing class. The new

class is called derived (or child) class and the one from which it inherits is called the base (or

parent) class.

Python Inheritance Syntax

class BaseClass:
 Body of base class
class DerivedClass(BaseClass):
 Body of derived class

Derived class inherits features from the base class, adding new features to it. This results into
re-usability of code.

Multiple inheritance: When a child class inherits from multiple parent classes, it is called as multiple
inheritance.

Example

class Base1(object):
 def __init__(self):
 self.str1 = "Geek1"
 print "Base1"

class Base2(object):
 def __init__(self):
 self.str2 = "Geek2"
 print "Base2"

class Derived(Base1, Base2):
 def __init__(self):

 # Calling constructors of Base1
 # and Base2 classes
 Base1.__init__(self)
 Base2.__init__(self)
 print "Derived"

 def printStrs(self):
 print(self.str1, self.str2)

ob = Derived()
ob.printStrs()

2. B) Explain in detail about handling exceptions and raising exceptions. - 5 Marks

An exception is an event, which occurs during the execution of a program that disrupts the
normal flow of the program's instructions. In general, when a Python script encounters a situation that
it cannot cope with, it raises an exception. An exception is a Python object that represents an error.

When a Python script raises an exception, it must either handle the exception immediately
otherwise it terminates and quits.
Handling an exception

If you have some suspicious code that may raise an exception, you can defend your program by
placing the suspicious code in a try: block. After the try: block, include an except: statement, followed
by a block of code which handles the problem as elegantly as possible.
Syntax

Here is simple syntax of try....except...else blocks −
try:
 You do your operations here;

except ExceptionI:
 If there is ExceptionI, then execute this block.
except ExceptionII:
 If there is ExceptionII, then execute this block.

else:
 If there is no exception then execute this block.

Here are few important points about the above-mentioned syntax −

 A single try statement can have multiple except statements. This is useful when the try block
contains statements that may throw different types of exceptions.

 You can also provide a generic except clause, which handles any exception.
 After the except clause(s), you can include an else-clause. The code in the else-block executes

if the code in the try: block does not raise an exception.
 The else-block is a good place for code that does not need the try: block's protection.

Example
This example tries to open a file where you do not have write permission, so it raises an exception −
#!/usr/bin/python

try:
 fh = open("testfile", "r")
 fh.write("This is my test file for exception handling!!")
except IOError:
 print "Error: can\'t find file or read data"
else:
 print "Written content in the file successfully"

Raising an Exceptions

We can raise exceptions in several ways by using the raise statement. The general syntax for
the raise statement is as follows.
Syntax

raise [Exception [, args [, traceback]]]

Here, Exception is the type of exception (for example, NameError) and argument is a value for
the exception argument. The argument is optional; if not supplied, the exception argument is None.

The final argument, traceback, is also optional (and rarely used in practice), and if present, is
the traceback object used for the exception.

Example

An exception can be a string, a class or an object. Most of the exceptions that the Python core
raises are classes, with an argument that is an instance of the class. Defining new exceptions is quite
easy and can be done as follows −

def functionName(level):
 if level < 1:
 raise "Invalid level!", level
 # The code below to this would not be executed
 # if we raise the exception

3. A) What is unit testing? Write a test case to check the function factorial which returns the

factorial of a given number. - 5 Marks

Unit testing is nothing but testing individual units or functions of a program.
Goals of unit testing:

 To make it easy to write test cases all a test needs to do is to say that, for this input, the
function should give that result.

 To make it easy to run test cases. Usually this is done by clicking a one buttion or by typing a
one key stroke.

 To make it easy, to tell if the test is passed. The framework takes care of reporting results. It
either passed, or it provides a detailed list of failures.

In this example we will write a file factorial.py.
import sys
def fact(n):
 """
 Factorial function
 :arg n: Number
 :returns: factorial of n

 """
 if n == 0:

 return 1
 return n * fact(n -1)

def div(n):
 """
 Just divide
 """
 res = 10 / n
 return res

def main(n):
 res = fact(n)
 print(res)

if __name__ == '__main__':
 if len(sys.argv) > 1:
 main(int(sys.argv[1]))

Now we will write our first test case.

import unittest
from factorial import fact

class TestFactorial(unittest.TestCase):
 """
 Our basic test class
 """
 def test_fact(self):
 """
 The actual test.
 Any method which starts with ``test_`` will considered as a test case.
 """
 res = fact(5)
 self.assertEqual(res, 120)

if __name__ == '__main__':
 unittest.main()

Running the test:
$ python factorial_test.py
.
--
Ran 1 test in 0.000s

OK

 3. B. Program to illustrate multithreading in python. - 5 Marks

import _thread
import time
def display(threadname,delay):
 count=0
 while(count<=5):
 #print("%s:%s"%(threadname,time.ctime(time.time())))
 count+=1
 time.sleep(delay)
 print("%s:%s"%(threadname,time.ctime(time.time())))
try:
 _thread.start_new_thread(display,("ONE",1))
 _thread.start_new_thread(display,("TWO",2))
except:
 print("Error")

ACADEMIC YEAR 2017-2018 Hall Ticket No:

III B.Tech II SEM I Mid Examinations Subject: Web Technologies

Branch: CSE Time: 9:15 AM To 10.45 AM

Max. Marks: 30M Date: 24-01-2018

Don’t Write Anything on question paper

SRI VASAVI
INSTITUTE OF ENGINEERING & TECHNOLOGY

NANDAMURU. PEDANA. - 521 369.

Answer All Questions. All Questions carry equal marks.

 3 X 10 = 30 Marks

1. a) Define frame. Create a HTML page that displays

multiple frames in a window. 3 M

b) Create a HTML which uses CSS that gives all H1

and H2 elements a padding of 0.5 ems; a grooved

border style and a margin of 0.5 ems. 3 M

c) Write a script that asks the user to enter two

numbers, obtains the two numbers from the user and

outputs text that displays the sum, product, difference

and quotient of the two numbers. 4 M

2. a) Create a XML document to store voter ID, voter

name, address and date of birth details. Create a DTD

to validate the document. 6 M

b) Compare and contrast between DOM and SAX

parsers. 4 M

3. a) Explain working mechanism of AJAX with suitable

example. 6 M

b) What is WSDL? Explain its features and document

structure. 4 M

Examination: III B.Tech II sem I mid subject:WT

Branch:CSE Max.marks:30

Scheme of valuation

1.a) Define frame. Create a HTML page that displays multiple frames in a window.

Sol: HTML frames are used to divide your browser window into multiple sections where each

section can load a separate HTML document. A collection of frames in the browser window is

known as a frameset. The window is divided into frames in a similar way the tables are

organized: into rows and columns.

Following is the example to create three horizontal frames −

<!DOCTYPE html>

<html>

 <head>

 <title>HTML Frames</title>

 </head>

 <frameset rows = "10%,80%,10%">

 <frame name = "top" src = "/html/top_frame.htm" />

 <frame name = "main" src = "/html/main_frame.htm" />

 <frame name = "bottom" src = "/html/bottom_frame.htm" />

 <noframes>

 <body>Your browser does not support frames.</body>

 </noframes>

 </frameset>

</html>

Following is the example to create three vertical frames −

<!DOCTYPE html>

<html>

 <head>

 <title>HTML Frames</title>

 </head>

 <frameset cols = "25%,50%,25%">

 <frame name = "left" src = "/html/top_frame.htm" />

 <frame name = "center" src = "/html/main_frame.htm" />

 <frame name = "right" src = "/html/bottom_frame.htm" />

 <noframes>

 <body>Your browser does not support frames.</body>

 </noframes>

 </frameset>

</html>

b) Create a HTML which uses CSS that gives all H1 and H2 elements a padding of 0.5 ems; a

grooved border style and a margin of 0.5 ems.

Sol: <html>

<head>

<style>

h1, h2 {

padding: .5ems;

border-style:groove;

margin: .5ems;

 }

</style>

</head>

<body>

<h1>Hello World!</h1>

<h2>Smaller heading!</h2>

</body>

</html>

c) Write a script that asks the user to enter two numbers, obtains the two numbers from the user

and outputs text that displays the sum, product, difference and quotient of the two numbers.

Sol: <html>

<head>

 <title>Integer Application</title>

 <script>

 var firstNumber; // first string entered by user

 var secondNumber; // second string entered by user

 var number1; // first number to add

 var number2; // second number to add

 var sum; // sum of number1 and number2

 var product; //product of number1 and number2

 var difference; //difference of number1 and number2

 var quotient; //quotient of number1 and number2

 // read in first number from user as a string

 firstNumber = window.prompt("Enter first integer");

 // read in second number from user as a string

 secondNumber = window.prompt("Enter second integer");

 // convert numbers from strings to integers

 number1 = parseInt(firstNumber);

 number2 = parseInt(secondNumber);

 sum = number1 + number2; // add the numbers

 product = number1 * number2; //multiply the integers

 difference = number1 - number2; //subtract the integers

 quotient = number1 / number2; //divide the integers

 // display the results

 document.writeln("<h1>The sum is " + sum + "</h1>");

 document.writeIn("<h1>The product is " + product + "</h1>");

 document.writeIn("<h1>The difference is " + difference + “</h1>");
 document.writeIn("<h1>The quotient is " + quotient + "</h1>");

 </script>

 </head><body></body>

</html>

2. a) Create a XML document to store voter ID, voter name, address and date of birth details.

Create a DTD to validate the document.

Sol: <? xml version = "1.0" encoding = "UTF-8">

<! DOCTYPE Voter_Information

[<! Element Voter_information (Id, Name, Address, Date_of_birth)>

 <! Element Id (#PCDATA)>

 <! Element Name (#PCDATA)>

 <! Element Address (#PCDATA)>

 <! Element Date_of_birth (#PCDATA)>

] >

<Voter_Information>

 <Id> FGK99567 </Id>

 <Name> Mohan Kumar </Name>

 <Address> Assam </Address>

 <Date_of_birth> 05-03-1991 </Date_of_birth>

</Voter_Information>

b) Compare and contrast between DOM and SAX parsers

sol:

3. a) Explain working mechanism of AJAX with suitable example

Sol:

AJAX is an acronym for “Asynchronous JavaScript And XML”. AJAX is a new

technique for creating better, faster and interactive web applications with the help of

javascript, XML, DOM and HTML. AJAX allows you to send and retrieve data

asynchronously with out reloading the entire web page.

Synchronous vs Asynchronous mode of communication:

In traditional web applications, the synchronous mode of communication existed between

the client and server is shown in the following figure.

 In synchronous model, client will send the request to the server. Server will receive the

request and then server will process the request. At the time of processing the request the

client must be in waiting mode. Client has to wait for the response and meanwhile cannot

perform any other operations(for ex: cannot send any other request to the server)

 In AJAX -based web applications, the asynchronous mode of communication between

the client and server is shown in the following figure.

In asynchronous model, client will send the request. Ajax engine will accept the request. AJAX

engine will process the portion of the request(like data validations). The remaining portion of

the request which must be processed by the server will be send to the server by using the

javascript and XMLHttpRequest object. server will process the remaining portion of the

request. Once AJAX engine is completed the processing of the request, it will send the response

directly to the client. The engine;s interaction with the server does not interrupt the client’s
interaction with the application.

Example

<html>

<head>

<title>First AJAX Application</title>

<script language = "javascript">

 var xhr = false;

 // creating the XMLHttpRequest object

 if (window.XMLHttpRequest)

 {

 xhr = new XMLHttpRequest();

 }

else if (window.ActiveXObject)

 {

 xhr = new ActiveXObject("Microsoft.XMLHTTP");

 }

 function getData(dataSource, divID)

 {

 if(xhr)

 {

 var obj = document.getElementById(divID);

 xhr.open("GET", dataSource); //setting the request

 xhr.onreadystatechange = function() //callback function

 {

 if (xhr.readyState == 4 && xhr.status == 200)

 {

 obj.innerHTML =xhr.responseText;

 }

 }

 xhr.send(null); //sending the request

 }

 }

</script>

</head>

<body>

 <h1>First Application using AJAX</h1>

<div id="targetDiv">

 <h1>Welcome to my Jewelery Showroom!</h1>

 </div>

</body>

</html>

In the above, web page is created that would display different jewellery items along with the

some information. When the user points to an image whose information he wants to know, the

details will be displayed on the web page with out the page being refreshed repeatedly

b) What is WSDL? Explain its features and document structure.

Sol;

WSDL stands for Web Services Description Language.

WSDL is the XML-based service representation language used to describe the details of the

complete interfaces exposed by Web services and thus is the means to accessing a Web service.

WSDL is platform and language independent and is used primarily to describe SOAP enabled

services.

Essentially, WSDL is used to describe precisely

– what a service does, i.e., the operations the service provides,

– where it resides, i.e., details of the protocol specific address, e.g., a URL, and

– how to invoke it, i.e., details of the data formats and protocols necessary to access the

service’s operations.

WSDL Elements:

A WSDL document contains the following elements:

definitions:

It is the root element of all WSDL documents. It defines the name of the web service, declares

multiple namespaces used throughout the remainder of the document, and contains all the service

elements described here.

 types:

 Types are data type definitions used in message communication with the service.

message:

Message defines the messages exchanged with the service. Corresponding to each webservice

message, the message section contains a message element which further contains sub elements.

portType:

It defines the web service operations to be performed, and messages to be invoked

The request-response type is the most common operation type, but WSDL defines four types:

Type Definition

One-way The operation can receive a message but will

not return a response

Request-response The operation can receive a request and will

return a response

Solicit-response The operation can send a request and will

wait for a response

Notification The operation can send a message but will

not wait for a response

binding:

Binding specifies the protocols used to access each portType. A portType can have many

bindings. In other words, a service might provide access to its methods(or operations) via

numerous different protocols such as SOAP, HTTP etc.

service:

Service describes the set of ports to use when invoking a service. A service can have many ports,

with each port having a name and a protocol binding.

The structure of WSDL document is as follows:

<definitions>

<types>

 datatypedefinitions........

</types>

<message>

 definition of the data being communicated....

</message>

<portType>

 set of operations......

</portType>

<binding>

 protocol and data format specification....

</binding>

</definitions>

ACADEMIC YEAR 2017-2018 Hall Ticket No:

III B.Tech II SEM II Mid Examinations Subject: Web Technologies

Branch: CSE Time: 9:15 AM To 10.45 AM

Max. Marks: 30M Date: 23-03-2018

Don’t Write Anything on question paper

SRI VASAVI
INSTITUTE OF ENGINEERING & TECHNOLOGY

NANDAMURU. PEDANA. - 521 369.

Answer All Questions. All Questions carry equal marks.

 3 X 10 = 30 Marks

1. a) Explain various PHP sort functions to sort array

elements with an example. 5 M

b) How we can retrieve data in result set of MYSQL

using PHP? Explain. 5 M

2. a) List and explain operators used in PERL. 5 M

b) What types of primary data structures are supported

in PERL? Discuss. 5 M

3. a) Define class? How to create a class and its objects in

ruby. How to declare and use constructor in ruby?

 5 M

b) Explain the looping structures available in Ruby.

 5 M

Examination: III B.Tech II sem II mid subject:WT

Branch:CSE Max.marks:30

Scheme of valuation

1.(a)

Sorting functions: The various sorting functions for arrays in php are
1. Sort()

2. rsort()

3. asort()

4. arsort()

5. ksort()

6. krsort()

sort(): The sort() function sorts an indexed array in ascending order.
 Syntax: sort(array,sortingtype); Where array specifies the array to be sorted and sorting type
specifies the how to compare the array elements which is optional.

rsort(): The rsort() function sorts an indexed array in descending order.
Syntax: rsort(array, sortingtype);

asort(): arsort() function sorts the associative array according to its value in ascending oreder.
Syntax: asort(array, sortingtype);

arsort(): arsort function sorts the associative array in descending order according to its value
syntax: arsort(array,sortingtype);

ksort(): ksort function sorts the associative array in ascending order depending on the key.
Syntax: ksort(array,sortingtype);

krsort(): krsort function sorts the associative array in descending order based on the key.
Syntax: krsort(array,sortingtype);

1.(b) Fetching the Records :
a) mysql_fetch_row (Query handler) : Returns a record set from the database server, as a
numerical array and moves the query handler to next record. if record does not exist return false.

b) mysql_fetch_assoc (Query handler) : Returns the record Set as an associative array with field
names as its index position - if record does not exist return false..

c)

d) mysql_fetch_array (Query handler) : Returns the record set as an array with numerical or
associative or both arrays . Returns false if no record found.

e) mysql_fetch_object (Query handler) : Returns the record set as an object with field names as
its values .
Ex:
<?php
 mysql_connect("localhost", "root") or die(mysql_error());
echo "Connection to the server was successful!
";
$database="regdb";
mysql_select_db($database) or die("unable to select database");
 $query="select * from regd";
mysql_query($query) or die(mysql_error());
$res=mysql_query($query);
?>
<table border="1" cellpadding="3">
 <tr>
 <td> name</td>
 <td>password</td>
<td>email</td>
<td>phone</td>
 <td>gender</td>
 <td>language</td>
<td>addresss</td>
</tr>
<?php
while($row=mysql_fetch_assoc($res))
 { ?>
<tr>
<td>
<?php echo $row['name'];?></td>
 <td><?php echo $row['pswd'];?></td>
<td><?php echo $row['email'];?></td>
 <td><?php echo $row['phone'];?></td>
<td><?php echo $row['gender'];?></td>
<td><?php echo $row['lang'];?></td>
<td><?php echo $row['address'];?></td>
</tr>
<?php }
?>
</table>
 <?php
mysql_close();
?>

2.(a) Perl language supports many operator types but following is a list of most frequently used operators:

 Arithmetic Operators
 Relational Operators

 Logical Operators

 Assignment Operators

 Bitwise Operators

 Miscellaneous Operators

Perl Arithmetic Operators
Assume variable $a holds 10
and variable $b holds 20 then:
Operator

Description Example

+ Addition - Adds values on
either side of the operator

$a + $b will give 30

- Subtraction - Subtracts right
hand operand from left hand
operand

$a - $b will give -10

* Multiplication - Multiplies
values on either side of the
operator

$a * $b will give 200

/ Division - Divides left hand
operand by right hand operand

$b / $a will give 2

% Modulus - Divides left hand
operand by right hand operand
and returns remainder

$b % $a will give 0

** Exponent – Performs
exponential (power)
calculation on operators

$a**$b will give 10 to the
power 20

Perl Relational Operators

Assume variable $a holds 10
and variable $b holds 20
Operator

Description

Example

== Checks if the value of two
operands are equal or not, if
yes then condition becomes
true.

($a == $b) is not true.

!= Checks if the value of two
operands are equal or not, if
values are not equal then
condition becomes true.

($a != $b) is true.

<=> Checks if the value of two
operands are equal or not, and
returns -1, 0, or 1 depending
on whether the left argument
is numerically less than, equal
to, or greater than the right
argument.

($a <=> $b) returns -1.

> Checks if the value of left
operand is greater than the
value of right operand, if yes
then condition becomes true.

($a > $b) is not true

< Checks if the value of left
operand is less than the value
of right operand, if yes then
condition becomes true.

($a < $b) is true.

>= Checks if the value of left
operand is greater than or
equal to the value of right
operand, if yes then condition
becomes true.

($a >= $b) is not true.

<= Checks if the value of left
operand is less than or equal
to the value of right operand,
if yes then condition becomes
true.

($a <= $b) is true.

Perl Assignment Operators
Assume variable $a holds 10
and variable $b holds 20 then:
Operator

Description Example

= Simple assignment operator,
Assigns values from right side
operands to left side operand

$c = $a + $b will assign value of
$a + $b into $c

+= Add AND assignment operator,
It adds right operand to the left
operand and assign the result to
left operand

$c += $a is equivalent to $c =$c
+ $a

-= Subtract AND assignment
operator, It subtracts right
operand from the left operand
and assign the result to left
operand

$c -= $a is equivalent to $c = $c
- $a

*= Multiply AND assignment
operator, It multiplies right
operand with the left operand
and assign the result to left
operand

$c *= $a is equivalent to $c = $c
* $a

/= Divide AND assignment
operator, It divides left operand
with the right operand and
assign the result to left operand

$c /= $a is equivalent to $c = $c
/ $a

%= Modulus AND assignment
operator, It takes modulus using
two operands and assign the
result to left operand

$c %= $a is equivalent to $c =
$c % a

**= Exponent AND assignment
operator, Performs exponential
(power) calculation on operators
and assign value to the left
operand

$c **= $a is equivalent to $c =
$c ** $a

2.(b)

Primary data structures supported in perl:

1. Scalar

2. Array (list), and

3. Association array (hash)

Scalars:
A Scalar variable always holds one value at a time and can take different kinds of values like numbers, strings and
references.
A scalar variable has a ‘$’ prefix. For example, $var = 'a string'; ## a quoted string $x = 12; $y=7.2; $z=0.7e2;
We can declare several scalars at once as follows. ($x,$y,$z)=(12,7.2,0.7e2);
Characters enclosed in single quotes are taken literally while variables are meaningful inside double quotes.

Arrays (Lists):
Array is a ordered list of scalars. In perl, array variables are preceded by an „@‟ sign.
Ex: @even=(2,4,6,8,10);

 @color=(‘red’,’blue’,’yellow’);
Arrays are Indexed by numbers with the first element of the array being indexed by zero. When accessing an

individual element of an array, write dollar sign with the variable name followed by index of an

element in square brackets.

@color=(„red‟,‟blue‟,‟yellow‟);
print “first element of the array is $color[0]\n”;
 print “second element of the array is $color[1]\n”;
print “third element of the array is $color[2]\n”;

Hashes:
Perl associative arrays are called hashes. So a hash is a set of key/value pairs. Hash variables are preceded by the %
prefix. You can create an hash arrays with the notation: (key1 => value1, key2 => value2, ...) To access the single

element of a hash, write the dollar sign with the hash variable name followed by key associated with the

element in curly braces.
Ex: %people = ("pavan" => 7, "kumar” => 11); ## creating a hash
 print "$people{'pavan'}\n"; ## displays 7
print "$people{'kumar'}\n"; ## displays 11

3.(a)

Classes
A class is defined as a template for objects, of which any number can be created. An object has a state, which is
maintained in its collection of instance variables, and a behavior, which is defined by its methods. An object can
also have constants and a constructor.
The methods and variables of a class are defined in the syntactic container that has the following form:
class class_name
...
end

 Class names, like constant names, must begin with uppercase letters

Ex;
class Stack_2
def initialize(len = 5) ## Constructor
@stack = Array.new(len)
@max_len = len
@top = -1
end
def push(num) ##push method if @top == @max_len
puts "Stack is full"
else
end end
@top += 1
@stack[@top] = num
def pop() ##pop method if @top == -1
puts "Stack is empty"
else
end end
@top -= 1
def disp() ## printing method for i in 0..@top
print "#{@stack[i]} "
end
end
end
puts
my_stack = Stack_2.new(2)
my_stack.pop() my_stack.push(10)
my_stack.push(20)
my_stack.push(30)
my_stack.disp()
my_stack.push(40)
my_stack.pop()
 my_stack.pop()
 my_stack.disp()

3.(b) Loops in Ruby are used to execute the same block of code a specified number of times.

The while Statement:
Executes code while condition is true. A while loop's condition is separated from code by the reserved word do.

Syntax:
while condition [do]
code
 end

while modifier :

Syntax

begin
 code
end while condition

Executes code while condition is true. Irrespective of the condition, code is executed once before condition is
evaluated.

Until Statement

Syntax:

until condition [do]

code
end

 Executes code while condition is false. An until statement's condition is separated from code by the reserved word
do

until modifier:

 Syntax:

begin

 code
 end until condition

Executes code while condition is false. If an until modifier follows a begin statement with no clauses, code is
executed once before conditional is evaluated.

